Iteratively Weighted Least Squares in Stochastic Frontier Estimation

Applied to the Dutch Hospital Industry

IDEAs 2012, Natal, Brazil

Jos L. T. Blank, Delft University of Technology, Netherlands Aljar J. Meesters, University of Groningen, Netherlands August 2012

Background

• How to improve transparency SFA?

Policymaker + DEA →

Policymaker + SFA →

January 8, 2024

Central question

- Is there an alternative for SFA, that is more transparent, less complicated and more robust?
- → YES.

- 1. SFA is a problem and a bless;
- 2. Alternative for SFA;
- 3. Application;
- 4. Further research.

Problems SFA

- A priori specification;
- Distributional assumptions on efficiency component;
- Far from transparent;
- Convergence issues;
- Hard to apply in system of equations;
- Conceptual: search for inefficiency !

- Advantages:
 - No distributional assumptions;
 - No a priori specifications.
- Conceptual: search for efficiency!
- Drawbacks:
 - No stochastics;
 - Hard to include control variables;
 - Hard to derive economic features.

January 8, 2024

Alternatives

- Thick Frontier (TFA) (Berger & Humphrey, 1991);
- Recursive thick frontier (RTFA) (Wagenvoort and Schure, 2006);
- \rightarrow selecting efficient firms by iterative procedure;
- → Estimation based on efficient firms.
- Also serious drawbacks:
 - Loss of degrees of freedom;
 - Use of panel data (RTFA);
 - Firm specific efficiency (RTFA).

PSE Studies

Iteratively Weighted Least Squares

- Search for the efficient firms (transparency);
- Single or multiple equations model;
- Easy programming (single eq. even in Excel);
- Promising results.

How does IWLS work?

- Choose parametric specification;
- Conduct LSQ estimation;
- Use residuals for establishing weights, for instance

$$w = \frac{1}{\left(1 + \frac{\hat{\varepsilon}}{\sigma_{LSQ}}\right)}$$
 if $\hat{\varepsilon} > 0$, else $w = 1$

- Re-estimate model with WLS;
- Repeat until parameter change $|\beta| < \delta$;
- Derive efficiency scores (eventually corrected for random noise).

January 8, 2024

Application: Dutch hospitals

- Data: about 80 hospitals 2003-2009;
- Outputs: 4 types of discharges;
- Inputs prices: 6 types of inputs;
- Input biased technical change;
- Translog specification cost function + share equations.

Results LSQ+IWLS

- Parameters plausible;
- Many parameters significant;
- Monotonicity and concavity conditions fulfilled.
- BUT:

- Show different pattern of technical change
 - TC 2003-2009: 18.6% (LSQ) versus 16.5% (IWLS);
- Parameters more efficient;
- Slight change in production parameters;
- No change in input price parameters.

Some other features

- 11 iterations to converge;
- Distribution of efficiency scores plausible.

January 8, 2024

Representativeness in time

• Note: no stratification;

Figure 1 Number of efficient hospitals by year

January 8, 2024

IPSE Studies

Representativeness wrt size

Figure 1 Number of efficient hospitals by size

January 8, 2024

Conclusions + further research

- Promising results;
- Improved transparency;
- No loss of degrees of freedom;
- Easy programming, et cetera;
- No distributional assumptions.
- Comparisons with SFA, RTFA;
- Comparisons on other data sets;
- Maybe Monte Carlo simulations.

• How to improve transparency SFA?

Policymaker + DEA →

Policymaker + IWLS →

January 8, 2024

