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Abstract 
 
In this paper we propose a method for efficiency measurement that is based 

on local estimation in several stages. The method is based on weighted least 

squares where weights depend on the distance of an observation to all other 

observations and on the distance to the frontier (efficiency). The new 

element in the method is that it also includes the information from the cost 

share equations and includes efficiency in the weighting matrix. The latter is 

derived from a first stage and implemented in a second stage analysis. An 

application to a data set of Dutch school boards in secondary education 

shows that it actually works well. It produces a number of reliable estimates. 

It also shows a variation in outcomes that would be hard to cover with, for 

instance, traditional procedures like SFA on a translog cost function. 
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Introduction 
 
Stochastic frontier analysis (SFA) and data envelopment analysis (DEA) 

are very popular methods to establish the efficiency scores of firms. Both 

methods have been extensively applied to firms in various industries to 

get an insight into the relative efficiency of individual firms. The methods 

have also been applied to compare the performance of departments within 

firms, and even to compare the performance of countries.  

SFA, which was developed by Aigner et al. (1977) and Meeusen & Van 

den Broeck (1977), is a parametric method. The standard cost or 

production function is estimated by maximum likelihood methods where 

the error component consists of random noise and a random efficiency 

component, which can be separated empirically. Extensive reviews of the 

SFA approach can be found in Fried et al. (2008), Kumbhakar & Lovell 

(2000), Coelli et al. (2005), Blank (2000), and  Parmeter and Kumbhakar 

(2014). 

DEA is a technique based on linear programming. This technique is 

derived from early production work by Farrell (1957) and Debreu (1951) 

and was later formalized using linear programming techniques (Banker et 

al., 1984; Charnes et al., 1978; Färe et al., 1986). The objective of this 

approach is to envelop the data points as closely as possible, and to 

produce the best practice frontier by linking together several line 



segments. This technique thus identifies the efficient observations and 

calculates the efficiency scores by measuring the distance to these 

efficient observations or convex combinations of them. 

Both methods have their pros and cons. Each method has been seriously 

criticized by proponents of the other method for several decades. The 

critics of SFA focus on the required functional specification of the model 

and the distributional assumptions about the efficiency component. The 

critics of DEA focus on the absence of a stochastic component and the 

difficulty of controlling for environmental variables and deriving 

economic features like economies of scale and scope and input (or 

output) substitution.  

It is generally recognized that the strong point of SFA is that it takes 

randomness (measurement and specification errors) into account, whereas 

the strong point of DEA is the flexibility of the production technology, 

which does not require some general functional specification. DEA is an 

observation by observation technique that provides a local estimator. 

Only in recent years has there been a tendency in the literature to try to 

combine the best of both worlds. Kuosmanen (2008) developed a 

technique that converts a DEA formulation into a stochastic formulation 

that can be estimated by maximum likelihood techniques. Another 

approach was developed by Fan et al.  (1996), who used standard kernel 

methods based on maximum likelihood. He applied the stochastic frontier 

model without the rigidity of a parametric representation of the 

technology.  For an extensive discussion, see Johnson and Kuosmanen 

(2015) in Ray et al.  (2015). 



Less criticism is voiced about the fact that SFA has hardly been applied 

to the full system of equations that can be derived from duality theory. 

Complicated solutions have been provided by Kumbhakar & Tsionas 

(2005), based on Bayesian techniques or through the reformulation of the 

model based on shadow pricing (Blank & Eggink, 2004; Kumbhakar, 

1997; Maietta, 2002). Almost all empirical applications of SFA are 

therefore limited to single equation models. 

In this paper we will present a method that is based on the idea of local 

estimation and includes the information from the cost share equations. A 

possible answer to the aforementioned issues is applying weighted least 

squares where weights depend on the distance of an observation to all 

other observations (more or less lookalikes) and on the distance to the 

frontier (efficiency). The latter is derived from a first stage and 

implemented in a second stage analysis. A similar method for deriving 

efficiency scores in case of a global estimation of a cost function was  

proposed earlier by Blank & Meesters (2012). To show how the 

procedure actually works, it is applied to a data set of Dutch school 

boards in secondary education. 

The outline is as follows. Section 2 describes the underlying model and 

the estimation procedure for estimating the model. In Section 3 the data 

are described, and in Section 4 the results are presented and discussed. 

Section 5 concludes the paper. 

2. Methodology 
 
The methodology can be applied to a production function, a cost function 

or any other representation of the production technology and some 

behavioral assumptions. In this paper we apply a cost function approach. 



Since we are only interested in a local estimator of the production 

technology at a given observation i (= 1, .., I), it suffices to use a first-

order Taylor approximation at the given point. However, there is no 

objection whatsoever to using higher order expansions, except for the 

number of parameters to be estimated. The cost function therefore can be 

written as: 

ln(𝐶𝐶) = 𝑎𝑎0 + ∑ 𝑏𝑏𝑚𝑚 ln(𝑦𝑦𝑚𝑚) + ∑ 𝑐𝑐𝑛𝑛ln (𝑤𝑤𝑛𝑛)𝑁𝑁
𝑛𝑛 + ∑ 𝑑𝑑𝑘𝑘ln (𝑧𝑧𝑘𝑘)𝐾𝐾

𝑘𝑘
𝑀𝑀
𝑚𝑚 + ℎ1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (1) 

 

With: 

𝑦𝑦𝑚𝑚 = output m; 

𝑤𝑤𝑛𝑛 = input price n; 

𝑧𝑧𝑘𝑘 = environmental characteristic k; 

time  = trend; 

𝑏𝑏𝑚𝑚, 𝑐𝑐𝑛𝑛, 𝑑𝑑𝑘𝑘, ℎ1 parameters to be estimated; 

In addition, we also estimate simultaneously the cost share equations as: 

𝑠𝑠ℎ𝑛𝑛 = 𝑐𝑐𝑛𝑛   (𝑛𝑛 = 1, . . ,𝑁𝑁)       (2) 

With: 

𝑠𝑠ℎ𝑛𝑛 = cost share of input n; 

The system of equations will be estimated with weighted nonlinear least 

squares. The weights are based on the distance of the reference 

observation to the other observations and to the frontier. The idea behind 

this approach is, to put it simply, that we would like to base the estimates 

on efficient neighbors as much as possible. The extent to which this is 

possible is an empirical matter. The weight function, for instance, can be 

described as: 



  

𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤ℎ𝑡𝑡 = 𝑡𝑡𝑒𝑒𝑒𝑒 ∗ norm � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘∙𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

�      (3) 
 
With: 

eff = efficiency; 

dist = distance; 

𝜎𝜎𝑑𝑑𝑡𝑡𝑑𝑑 = standard deviation of distance measure;  

k = scaling parameter; 

norm(.) is the normal density function. 

In order to obtain a distance measure that does not depend on the unit of 

measurement, all variables are  standardized on their means. Then the 

distance is measured by the Euclidean distance: 

𝑑𝑑𝑡𝑡𝑠𝑠𝑡𝑡 = �∑ (𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑚𝑚∗ )2M
m       (4) 

 

With: 

dist = average distance to the reference observation; 

𝑦𝑦𝑚𝑚∗   = value of output m of the reference observation. 

𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤ℎ𝑡𝑡 = weight attached to an observation; 

k is a (fixed) parameter comparable to bandwidth 

𝜎𝜎𝑑𝑑𝑡𝑡𝑑𝑑2   = sum of variances of ym   

 

Then the following set of equations of a cost function model is estimated: 

ϵ0 = weight ∗ � ln�Cobs� − ln(C)�    (5) 
 
ϵn = weight ∗ �shnobs − shn�     (6) 
 



For each observation i =1, .., I we apply (local) least squares (LLS). After 

each least squares estimation, we set 𝑡𝑡𝑒𝑒𝑒𝑒𝑑𝑑 = exp(−𝜖𝜖𝑑𝑑) . The efficiency 

scores will be used in the next stage to set weights (along with the 

distance to the reference point). 

Summarizing: 

The procedure is conducted in several stages 𝑠𝑠 = 1, . . , 𝑆𝑆 and stops at 

iteration S when the efficiency scores change less than some threshold 

value (= 0.01). At 𝑠𝑠 = 1, the vector of weight parameters is set to 1. 

At each stage, weighted least squares is applied for each DMU separately 

to a cost function model, consisting of a cost function and cost share 

equations. The weights are based on the distance (dist) between a DMU 

and the DMU under investigation and the cost efficiency (eff) of the 

DMU: The larger the distance, the smaller the weight, and the larger the 

efficiency, the larger the weight. 

Each separate LLS for a DMU provides an estimate of the efficiency 

parameter, which can be used in the next stage of the procedure to set the 

weight parameter. Note that the efficiency parameter varies only per stage 

and the dist parameter per LLS analysis. 

At  𝑠𝑠 = 𝑆𝑆, economic outcomes can be presented, such as scale elasticity, 

marginal cost, technical change, and cost efficiency scores. 

3. Data 
 

Production  
The different types of schools in secondary education require different 

educational processes and consequently lead to different costs. For 



example, a teacher who teaches students in the final year of pre-academic 

education is generally more expensive than a teacher for students in the 

first year of vocational training. Therefore, the production cannot be 

captured in one number. Production indicators are based on the different 

types of education and grades. We therefore distinguish: 

• Grade 1 and 2 of all types of education; 

• Grade 3-4 VMBO (vocational training);  

• Grade 3-6 HAVO and VWO (general higher and pre-academic).  

Quality in education is generally difficult to measure. In order to take the 

quality of education into account, passes to next grades and examination 

results are included. The influence of the initial skills of pupils on quality 

measures are taken into account by including the so-called school 

recommendation at the beginning of a pupil’s school career.  

The resources 
The resources used can be divided into five categories or types of costs:  

• Teaching personnel;  

• Administrative personnel; 

• Executive board and management; 

• Housing (excluding rent);  

• Material supplies. 

 

We exclude capital cost because for most institutions, the local 

government is responsible for providing the school buildings. For a 

meaningful comparison with institutions owning their own school 

buildings, rent and amortization of buildings are therefore excluded.  

Resource prices  



The relative prices of the staff categories differ by region and year. 

Averaging personnel costs per full-time equivalent over regions and years 

by a regression analysis provides a labor price for each staff category for 

each region in a certain year.  

The prices for housing and material are assumed to be equal for all 

educational institutions and thus only vary over the years. Since housing 

costs are merely building-related costs such as energy and cleaning, the 

energy price indices of Statistics Netherlands are used for the housing 

costs. For the material costs, the consumer price index of Statistics 

Netherlands is used.  

 
Data resources, data checks and manipulations  
For the analyses, we used different databases. The number of pupils was 

taken from the public files of the Office of Education (DUO) and the 

Ministry of Education, Culture and Science. The numbers on education 

returns were supplied by the Education Inspectorate. The staff numbers 

and salary data were also provided by DUO. Finally, the price 

development of energy and consumer goods and services was collected 

by Statistics Netherlands. The period for which all necessary data are 

available is 2007-2010.  

Data checks and manipulations 
We applied a number of checks and manipulations to these data (for 

details, see Urlings & Blank, 2012). A statistical description of the data is 

given in Table 3 for the year 2010.  



Table 1 Statistical description variables in analysis, 2010. 

Variable Mean Std. Error Minimum Maximum 
Grades 1-2a 1148.5 821.5 185.1 5783.3 
Vocational training grades 3-4a 515.8 375.7 76.5 2501.3 
General education grades 4-6a 650.7 491.4 93.1 3095.3 
Total cost  (x € 1000) 19179 14358 5100 105563 
Cost share board/management  0.05 0.02 0.00 0.16 
Cost share administrative 
personnel 

0.09 0.04 0.00 0.24 

Cost share teaching personnel 0.65 0.05 0.44 0.81 
Cost share housing 0.07 0.03 0.02 0.28 
Cost share material supplies 0.14 0.03 0.06 0.29 
Price management (€) 100014.3 4960.3 88393.0 110339.0 
Price administrative personnel (€) 46388.9 3872.6 37756.0 52967.0 
Price board/management (€) 65278.5 3937.8 57210.0 74661.0 
Price housing  (€) 358.5 14.4 342.0 380.5 
Price material supplies (2007=100) 104.6 1.8 101.6 106.7 
a Corrected with pass rate 

 

Secondary education statistics 
In 2010, the average secondary school in the Netherlands had 3,300 

pupils. Of these, 38% were in the first two grades, 19% in junior 

vocational education (vmbo), 35% in senior general secondary education 

(havo) or pre-university education (vwo), and 8% in other education 

(practical education, primary education or senior vocational 

education).The costs can be divided across five categories:  

• teaching staff (65%);  

• administrative staff (9%); 

• management (5%); 

• accommodation (6%); 

• material supplies (15%).  

 

There is a strong variation in the scale of the educational institutions. Half 

of the educational institutions have fewer than 2,100 pupils and costs of 



under 17.5 million euros. The largest educational institution has over 

62,000 pupils and costs totalling 482 million euros. 

4. Results 
 
The outcomes are presented by graphs. Figures 1 to 3 present the 

marginal costs of different types of pupils who passed. The marginal cost 

gives a first indication of the plausibility of the estimates. The marginal 

cost of an undergraduate pupil has more or less a normal distribution 

around € 8,000 with a limited variance. Marginal costs of pupils in 

vocational training are higher, distributed around € 10,000. This 

distribution is skewed to the right. A number of schools tend to have 

higher marginal costs than the modus. The marginal cost of pupils in 

general education (figure 3) has a distribution around € 6,000. This 

distribution is skewed to the left, indicating that there are relatively more 

schools with lower marginal costs than schools with high marginal costs. 

The outcomes make sense, since it is known that vocational training is 

more expensive than general education due to higher material costs 

(machinery, etc.). General education is less expensive than undergraduate 

education due to the substantially lower number of teaching hours in the 

graduate phase of education. 

 



Figure 1 Estimated marginal costs of undergraduate pupils (corrected for passes) 

 
 
 

Figure 2 Estimated marginal costs of pupils in vocational training (corrected for passes) 

 

 
 



Figure 3 Estimated marginal costs of pupils in general education (corrected for passes) 

 
 
Figure 4 represents the estimated cost flexibility of each school board (the 

red + signs). Each school board is reflected by its size, expressed in terms 

of a number times the average size. So two, for instance, reflects a school 

board that is twice the size of the average school board. The green and 

purple lines represent the lower and upper bounds of the 95% confidence 

interval. Outcomes less than one indicate economies of scale, and 

outcomes greater than one indicate diseconomies of scale. From figure 4 

we can conclude that school boards less than two times the size of the 

average school board face economies of scale, whereas school boards 

greater than three times the average size face diseconomies of scale. The 

optimum size (neither economies nor diseconomies of scale) lies between 

two and three times the average size. 

 



Figure 4 Economies of scale (cost flexibility with 95% CI) 

 
 
Figure 5 represents the distribution of the efficiency scores. It shows that 

the majority of the schoolboards are efficient or close to efficient. This is 

due to the fact that only school boards are regarded as suitable references 

when they have a rather similar production profile. Observations with 

deviated production profiles receive a low weight in the estimation 

procedure. Sensitivity analysis based on local estimation with a wider 

bandwidth may result in a different efficiency pattern. However, it shows 

that estimation with different bandwidths leads to almost identical 

distributions of efficiency scores. 

 
 



Figure 5 Efficiency scores 

 
 
Figure 6 displays technical change. The mean is represented by the red 

dots, while the 95% confidence intervals are represented by the upper 

(green) and lower bounds (blue). It shows that technical change is 

significantly negative for all schools, implying a loss of productivity of 

about 3% annually. It also shows that for a few larger school boards, 

technical change is even more negative. 
 
Figure 6 Technical change (with 95% CI) 

 
 



Further, we checked the outcomes on the conditional mean of the cost 

shares. They show a very consistent pattern with respect to size. 
 
We also conducted some sensitivity analyses by varying the bandwidth (k 

parameter in equation 3). We calculated the outcomes for different k (= 

0.25, 0.50 and 1.00). Table 2 summarizes the outcomes by presenting a 

test of the mean difference in the efficiency scores, the estimates of 

technical change and the estimated cost flexibilities. 
 
Table 2 Test results of mean differences for varying bandwidth (k = 0.25, 0.5 and 1) 
 
Test of mean difference Mean  Std. 

Error 
T-test 

Efficiency k=1vs k=0.5 -0.001 0.000 1.58 
Efficiency k=0.5 vs k=0.25 -0.002 0.001 -3.34 
Technical change k=1 vs k=0.5 -0.000 0.000 -1.91 
Technical change k=0.5 vs k=0.25 -0.001 0.000 -16.30 
Cost flexibility k=1vs k=0.5 0.002 0.003 0.67 
Cost flexibility k=0.5 vs k=0.25 -0.008 0.001 -8.05 
 
From Table 2 we conclude that the differences between the different 

(point) estimators are relatively low. In case of the efficiency scores, a 

larger bandwidth (corresponding to a larger k) corresponds to lower 

efficiency scores. The differences, however, are very small and in one 

case not significantly different from zero. Note here that efficiency scores 

are about 95% on average.  For technical change, the differences are also 

very small. In spite of the fact that the mean differences are significant, 

the differences are still modest.  The same holds for the cost flexibility. 

The differences are less than 1%. Larger bandwidths correspond to a 

slight increase in cost flexibility, implying that economies of scale cease 

to exist at lower production levels. Further, it is striking that, although the 

differences are very small, all differences are significant at the 5%-level 

with respect to the test k = 0.5 versus k=0.25. 



5. Conclusion 
 
In this paper, we presented a method for efficiency measurement that is 

based on the idea of local estimation in several stages. The new element 

in the method is that it also includes the information from the cost share 

equations and includes efficiency in the distance measure. The method is 

based on weighted least squares, where weights depend on the distance of 

an observation to all other observations (more or less lookalikes) and on 

the distance to the frontier (efficiency). The latter is derived from a 

former stage and implemented in a next stage analysis. An application to 

a data set of Dutch school boards in secondary education shows that it 

works well. The approach produces a number of reliable estimates. It also 

shows a variation in outcomes that would be hard to cover with, for 

instance, traditional procedures like SFA on a translog cost function. It 

therefore seems that the proposed approach could be an interesting 

alternative to standard frontier techniques. This approach adds more 

flexibility to the modeling of the production technology. 

Nevertheless, a number of issues still need to be addressed. The set of 

weights is based on a distance measure and the efficiency score. For the 

distance measure, a traditional Euclidean measure is used, whereas 

efficiency scores are assumed to be directly related to the estimated errors 

in the first stage of the procedure. Sensitivity analysis certainly shows 

that varying the bandwidths has only limited effects on the outcomes, but 

we have presented here only one application. Therefore, more research on 

the effect of alternative distance and efficiency measures is required. 
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